Palindromes in Some Smarandache-Type Functions

نویسندگان

چکیده

The objective of this paper is to investigate palindromes in three Smarandache-type arithmetic functions,namely, the Smarandache function S(n), pseudo Z(n), and Sandor-Smarandache SS(n).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Elementary Algebraic Considerations Inspired by Smarandache Type Functions ( II )

The paper presents new properties for some functions constructed similarly to the functiol} ry :" N* -N* , the Smarandache function, defined by "In E N*, ry(n) = min{kJk! is divisible by n} "Smarandache's type function" " The Smarandache "I function and its principal properties are already known in the literature of speciality. Other functions were built analogously, among which the following o...

متن کامل

Some arithmetical properties of the Smarandache series

For every positive integer n, let S(n) be the minimal positive integer m such that n|m!, i.e., S(n) = min{m : m ∈ N, n|m!}. This function is known as Smarandache function . Easily, one has S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, · · · . Use the standard factorization of n = p1 1 p α2 2 · · · p αk k , p1 < p2 < · · · < pk, it’s trivial...

متن کامل

On some Smarandache conjectures and unsolved problems

In this paper some Smarandache conjectures and open questions will be analysed. The first three conjectures are related to prime numbers and formulated by F. Smarandache in [1].

متن کامل

The Representations and Positive Type Functions of Some Homogenous Spaces

&lrm;For a homogeneous spaces &lrm;$&lrm;G/H&lrm;$&lrm;, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of &lrm;$&lrm;G&lrm;$&lrm;. &lrm;Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...

متن کامل

Some Properties of the Pseudo-smarandache Function

Charles Ashbacher [1] has posed a number of questions relating to the pseudo-Smarandache function Z(n). In this note we show that the ratio of consecutive values Z(n + 1)/Z(n) and Z(n − 1)/Z(n) are unbounded; that Z(2n)/Z(n) is unbounded; that n/Z(n) takes every integer value infinitely often; and that the series ∑ n 1/Z(n) is convergent for any α > 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mantik : jurnal matematika

سال: 2022

ISSN: ['2527-3167', '2527-3159']

DOI: https://doi.org/10.15642/mantik.2022.8.1.1-9